

Objective:

Develop and demonstrate a point cloud data processing solution, which takes a point cloud of a bridge obtained from laser scanning as *input*,

... and generates a solid model estimate of the bridge structure with semantic labels for its constitutive components as *output*.

Scope:

- No pre-existing BIM/IFC model.
- High-level information regarding bridge available (from user).

Input:

- Point cloud.
- Minimum viable density (about 1 pt/cm).
- Some user guidance (< 30 minutes).

Sufficient

Insufficient

Output:

- Industry Foundation Class (IFC) formatted model file.
- Output level of development (LOD) around 200-300.

Expectation: First pass 'best-guess' classifications, tagging the objects as

- columns,
- girders,
- slabs,
- etc.

where possible.

What are strategies for going from dense or fine grain collections of raw data to its re-organization into components associated to a bigger entity?

e.g., from points to bridge model?

Bottom-Up Processing

Top-Down Processing

Both approaches were pursued:

- 1. Top-Down
- 2. Bottom-Up with Top-Down partitioning

Both approaches were pursued:

- 1. Top-Down
- 2. Bottom-Up with Top-Down partitioning

Goal:

Top-down procedure

- A heuristic approach to the problem of object detection and object fitting
- Begins with a broad-picture view
- Explicitly incorporates engineering criteria as segmentation heuristics.
- General idea is to use the bridge topological and physical constraints.

Partition span-wise to illuminate structure.

Ground Truth Preparation:

	Bridge 1	Bridge 2	Bridge 3	Bridge 4	Bridge 5
PCD	H				
BrIM	W III			TILLE	
Scanning(h)	3.5	3.3	3.2	4	3.2
Segmentation(h)	3.5	3.3	3.2	4	3.2
Modelling(h)	50	31	30	26	22
	Bridge 6	Bridge 7	Bridge 8	Bridge 9	Bridge 10
PCD					TOP !
BrIM	· · · · · · · · · · · · · · · · · · ·				
Scanning(h)	2.5	2	2.3	2.2	2
Segmentation(h)	2.5	2	2.3	2.2	2
Modelling(h)	25	27	23	20	22

average time (h) per bridge					
Scanning	Segmentation	Modelling			
2.82	1.52	28			

Experiments Data Preparation

Manual segmentation

Manual labelling

Both approaches were pursued:

- 1. Top-Down
- 2. Bottom-Up with Top-Down partitioning

- parametric model extraction
 - 2. Detection and classification of bridge components from primitives
 - 3. Bridge component parser for generating IFC model files.

- 2. Detection and classification of bridge components from primitives
 - 3. Bridge component parser for generating IFC model files.

Clean/Partition
Point Cloud

Quadratic Surface
Primitive Segmentation

Model Estimation

Get use Afterucles a less points own cloud and others sylentities as bridge. frame.

10-20 minutes

Model Merging

Surface Models

Quadratic Surface
Primitive Segmentation

Model Estimation

Input points only

few big surfaces many smaller ones

Partition

Automated algorithm.

5-10 hours

Quadratic Surface *Primitive* Segmentation

Model Estimation

few big surfaces many smaller ones

few big surfaces some medium ones

Model Merging

Partition Merging

Automated algorithm.

5-10 hours

Model Estimation

Correct over-segmentation.

Partition Merging

User feedback.

few big surfaces some medium ones

Output only important surfaces

5-10 minutes

- 2. Detection and classification of bridge components from primitives
 - 3. Bridge component parser for generating IFC model files.

Classifier to output both

hypothesized CAD model labels and hypothesize bridge components labels.

Purpose: Reverse engineer the top-down process.

Training requires top-level structure and lower-level equivalent.

Implementation takes lower-level information to hypothesize top-level structure.

Classifier will output both hypothesized CAD model labels and hypothesize bridge components labels.

Feature vector description of each surface element.

- T_i Type of the surface primitive
 - n_i Normal of each surface primitive
 - v_i Principal direction of the support
 - B_i Relative scale of bounding box size
 - Connecting neighborhood statistics

^{*} N_n is the number of the primitive types

Sample output of bridge component classification.

- 2. Detection and classification of bridge components from primitives
 - 3. Bridge component parser for generating IFC model files.

IFC Model

IFC Model

Remaining work - Fitting

