
What is CAD?

• Computer Aided Design (CAD) transforms the labor intensive drafting to an efficient electronic documentation

- CAD can be used to produce 2 or 3 dimensional models of parts, materials or buildings.
- The lines, arcs, circles in CAD models are independent of one another.
- Notations are the only way to enrich the design context with very limited information

What is BIM?

Building Information Modeling is an intelligent model-based process

- A full digital prototype of a building
- A database to manage project information shared among all stakeholders

Retrieved from http://www.duttonelectric.com/custom-design-build/

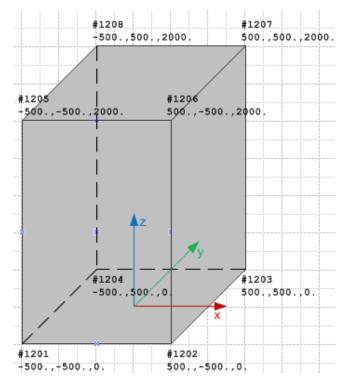
• A **Building Model** is a digital representation of a building, its function, design, construction and later its operation. A building model replaces building drawings.

• Unlike computerized drawings, building models <u>can be processed by</u> <u>computer software.</u>

• **Building Information Modeling** is the process of creating a building model. The term also describes the software and technologies for compiling and processing building models.

BIM Data Schema - IFC

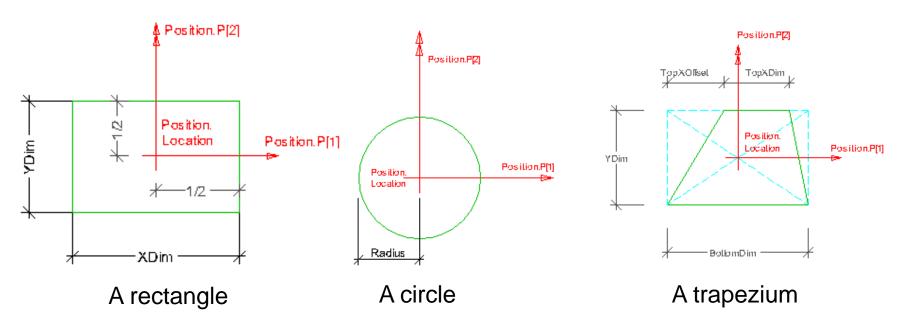
Industry Foundation Classes (IFC)


- An official International Standard
- Describe building and construction industry data
- Facilitate the data interoperability in the architecture, engineering and construction (AEC) industry
- Open and platform neutral specification

• BIM defines objects using parametric geometry, alphanumeric properties, and relationships

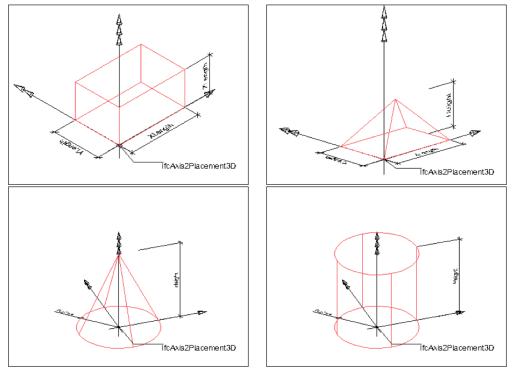
A point is defined using coordinates in 2D/3D space e.g., (500., 500., 2000)

Retrieved from http://www.buildingsmart-tech.org/ifc/IFC4//Add2/html/annex/annex-e/brep-model.htm



• BIM defines objects using parametric geometry, alphanumeric properties, and relationships

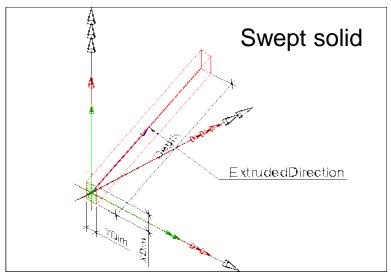
Different type of surfaces can be defined using different parameters e.g., a rectangle can be defined by the length, width and the coordinates of its center

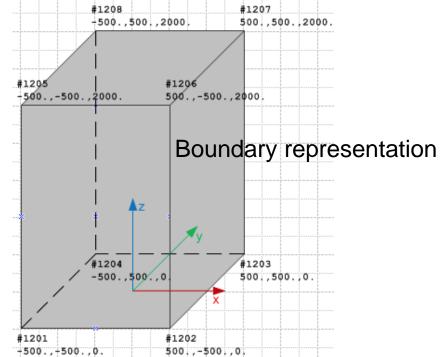


• BIM defines objects using parametric geometry, alphanumeric properties, and relationships

Different type of solids can be defined using different parameters

e.g., a cuboid can be defined by the length, width, height and the coordinates of a corner




 BIM defines objects using parametric geometry, alphanumeric properties, and relationships

The same object can be modelled using different types of representation

A longitudinal object represented by its cross section and extruded direction

Retrieved from http://www.buildingsmarttech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcbeam.htm

A 3D solid object defined by its six faces, each of which is defined by its four vertices

Retrieved from http://www.buildingsmart-tech.org/ifc/IFC4//Add2/html/annex/annexe/brep-model.htm

Retrieved from https://www.thenbs.com/knowledge/isnt-bim-just-3d-cad

.

BIM defines objects using parametric geometry, alphanumeric properties, • and relationships 102 External cavity walling

6096.0

Wrag *

Thickness

A BIM model serves like a database for storing useful information in certain data structures

> Edit Assembly Family:

> > Type: Total thickne

> > > Lavers

Restic Wed Cav - 102 75 100 p - Lwt

> EXTERIOR SIDE Material

Masonry - Brick 102.5

lation / The 175.0

Above Wr 0.0

Conc 100.0

290.0

Function

Thermal/Air Lay

Finish 1 [4]

Core Bos

tructure [1]

BIM Data Schema

	Default Wrapping		At Ends:	
	Both	•	None	
	Modify Vertical Structu	re (Section Previe	nv anity)	
	Modify	Merge R	egione	Sweeps
	Assign Levers	Split Re	pon	Reveals

	- Туре:	Cavity walling, concrete filled.		
	- Masonry units:	Common bridks.		
	- Mortar:	Class M6 mortar.		
2	Dpc at ground floor: Flexible cavity trays.			
	Walling above ground:			
	- External leaf above ground:			
	Masonry units:	Facing bricks.		
	Bond or coursing:	Flemish bond.		
	- Internal leaf above ground:			
	Masonry units:	Aerated concrete blocks.		
	- Mortar:			
	Type:	Class M4 mortar.		
	Joint profile to external faces:	Bucket handle.		
	- Wall ties:	Insulation retaining wall ties.		
	- Cavity insulation:	Full fill cavity insulation.		
	- Ventilation components:	Air bricks and sub-floor ventilation ducts		
×	- Items supplied by others:			
	Openings:			
	- Lintels:			
	Type:	Manufactured stone lintels.		
	Cavity tray over:	Flexible cavity trays.		
	- Cavity closers:	Flexible insulated dpcs.		
	- Sills:			
	Type:			
	Dpo below:	Manufactured stone sills.		
7.	Abutments:	Natural stone sills.		
	- Cavity trays and dpcs:	Fledast condicte sins.		
	- Flashings built into masonry	As drawings.		

properties of a wall

awing references Parameters

 BIM defines objects using parametric geometry, alphanumeric properties, and relationships

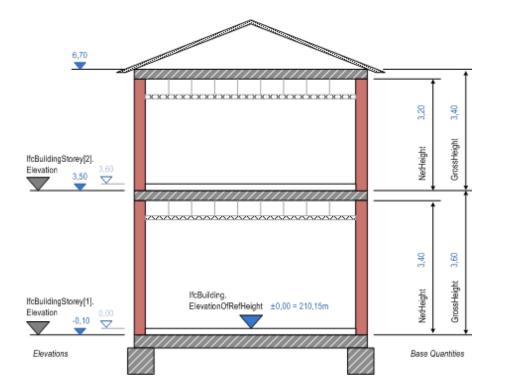
In addition to the physical objects, virtual objects can also be defined in a BIM model

IfcSite.ObjectPlacement = IfcLocalPlacement for information purpose equal to: RefLongitude, RefLatitude, RefHeight Refering to degree, minute, seconds (with fractions) given in WGS84: 15°,52',23.34"; 53°,21",12.34",210.15m

e.g., the virtual object "project site" has properties:

- Longitude
- Latitude
- Height

etc.



Infravation

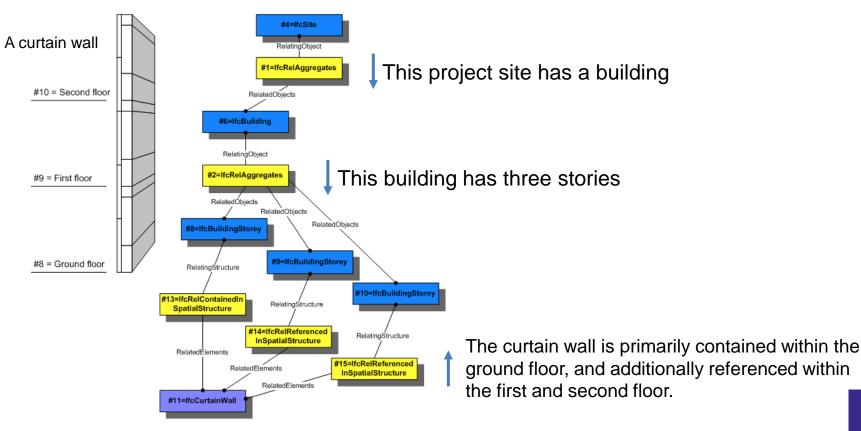
• BIM defines objects using parametric geometry, alphanumeric properties, and relationships

In addition to the tangible objects, virtual objects can also be defined in a BIM model

e.g., the virtual object "building storey" has properties:

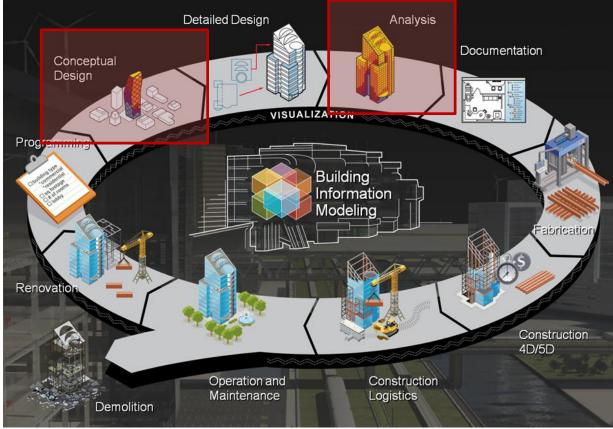
- Elevation
- Height
- Gross height

etc.



 BIM defines objects using parametric geometry, alphanumeric properties, and relationships

The relationships between physical objects and virtual objects (e.g. spaces) are explicitly defined in a BIM model



BIM Application

 BIM is more advanced than CAD because it can automate domain applications when information required are defined

A BIM model can incorporate related information for automated energy analysis

- weather information
- heat transfer coefficients of the objects
- thermal resistance of the objects

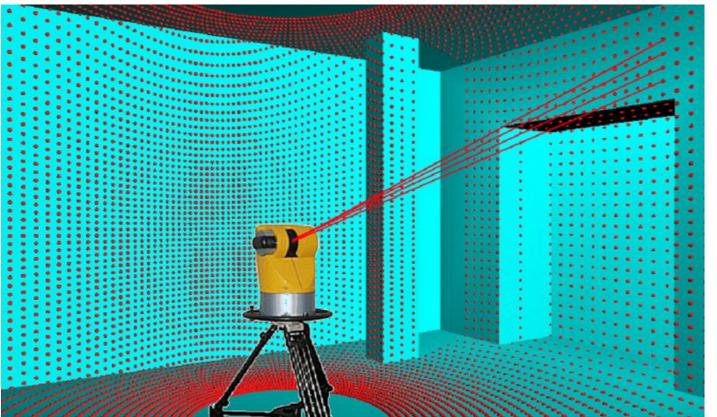
..

A BIM model can incorporate related information for automated structural analysis

- Young's modulus of the objects
- Shear modulus of the objects

^{• ..}

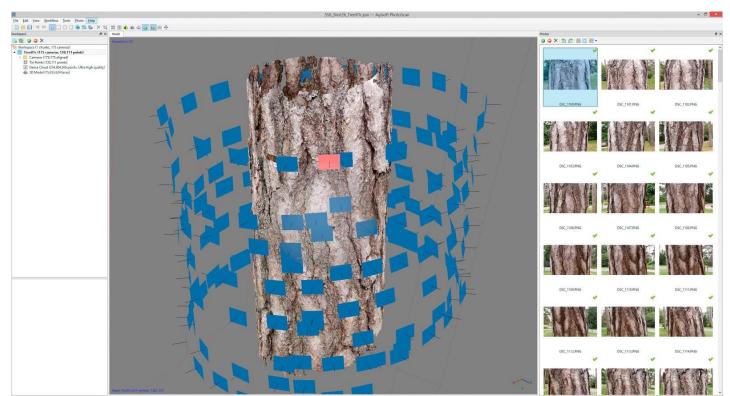
'As-is' BIM model



Retrieved from http://www.caddwest.com.au/services/printing-scanning/3d-scanning

TLS and photogrammetry

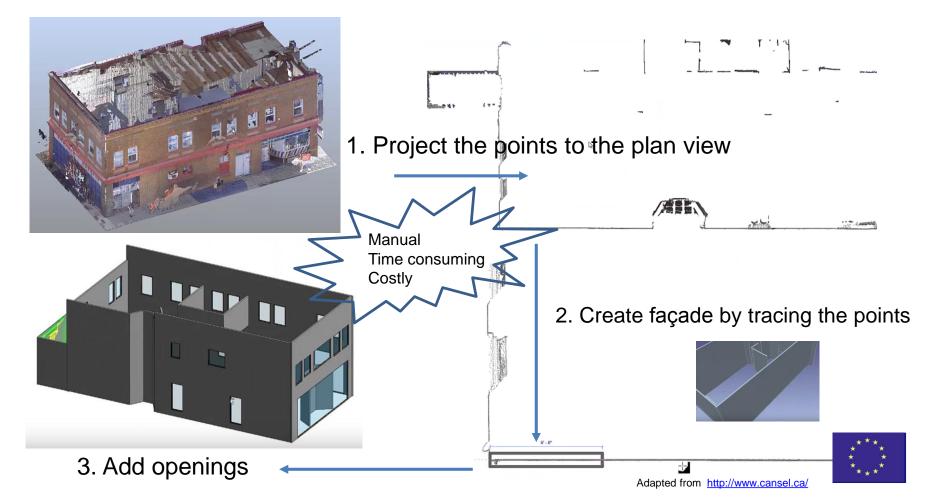
Terrestrial laser scanning (TLS) is an automated measurement technology.


Retrieved from http://www.spatialhumanities.de/en/ibr/technology/terrestrial-laserscanning.html

TLS and photogrammetry

Photogrammetry

PCD, 3D models, and BIM models



Point Cloud Data

PCD, 3D models, and BIM models

Traditional workflow of creating a 3D model using point cloud data

PCD, 3D models, and BIM models

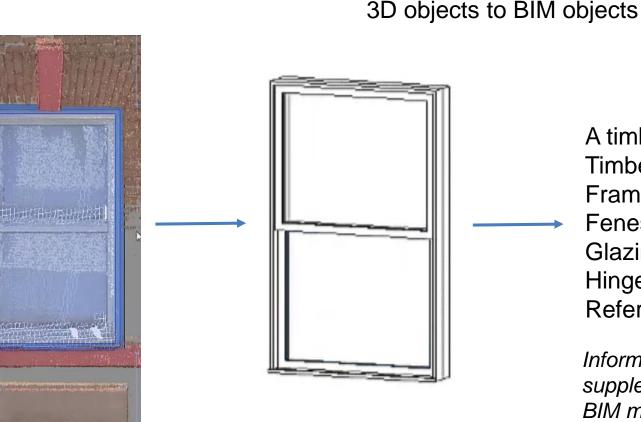
Create a window by examining the point cloud data

Adapted from http://www.cansel.ca/

specific needs

Glazing? Hinge Options? Reference to a space? Information needs to be supplemented to the

Fenestration Options?


A timber window

Timber type?

Frame type?

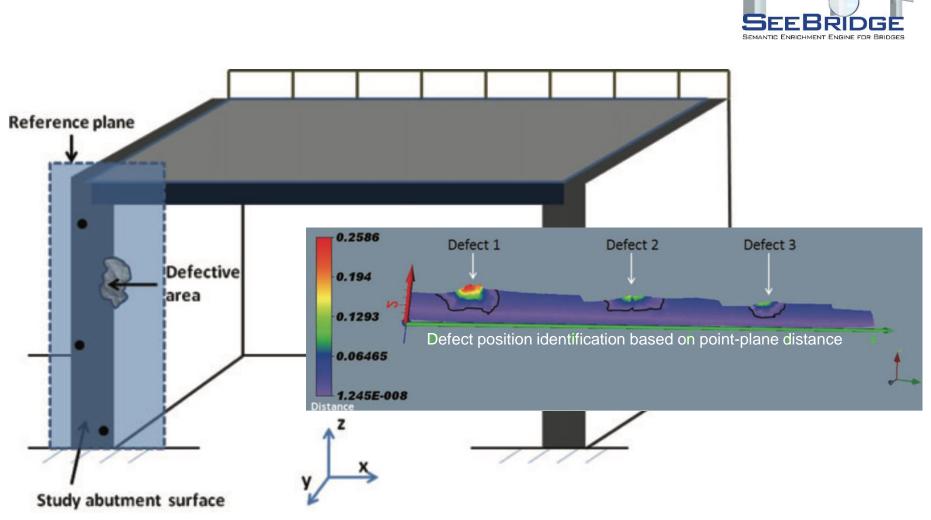
BIM model according to

Facility management

Visualize the 3D objects

Retrieve the information of the objects

Bridge defect detection



Remote sensing for defect detection

Liu, W., et al. (2011). "LiDAR-BASED BRIDGE STRUCTURE DEFECT DETECTION." Experimental Techniques 35(6): 27-34.

- BIM is a process for creating parametric and semantically rich building models.
- IFC is the data schema that specifies how computers represent a BIM model
- TLS and photogrammetry are contactless survey technologies for rapid collection of spatial data
- The data need to be progressively converted to 3D geometries and BIM models which can then be used in asset management systems
- The structural defects need to be detected in the spatial data and incorporated in the system

