

What information is needed for bridge inspection?

- Bridge drawings, as-built, as-designed or survey products
- Characteristic parameters, normally documented on the Identity Card of the bridge (or 'Birth Certificate')
- Bridge geometric properties including division into elements (and subelements) and related quantities
- Bridge schema and segmentation of elements/areas based on their importance and /or sensitivity

What information is needed for bridge inspection?

- Previous inspection (if conducted) findings including defects and safety issues (if any) and special issues related to the bridge
- Any treatments/ interventions/ improvements performed since the last inspection
- Environmental information and near bridge potential hazards
- Specific information regarding special equipment and temporary road safety arrangements needed for performing the inspection

What information is needed for bridge inspection?

Defects

- Inspection manuals define information requirements regarding defects
- Aimed at experienced human engineers, large margin for interpretation
- Types of defects and properties need to be extracted and transformed into an hierarchical information model
- Defects libraries/catalog should be established

What information is needed for bridge inspection:

Defects

The most common defects are:

- Cracks
- Delamination
- Spalling
- Efflorescence
- Freeze-thaw
- Scaling
- Abrasion/wear

What information is needed for bridge inspection?

Defect information

- Type, location, extent, severity and, if possible, cause of defects
- Further structuring is required:
 - distinguish between symptom (typically the visual surface defect) and cause (based on multiple defects and requires further model knowledge)
 - Defect type dependent properties and general defect properties (e.g. orientation and location)

Why use BIM for Bridge Management Systems?

Prüfbericht 2003 H

Prüfbericht 2002 E

- Today's BMS do not support a transparent condition assessment
- In many cases, the sketches and notes taken by inspectors are not associated with building components

Data on the bridge material and the used material, the pre-stress etc. is dispersed among several documents (drawings,

protocols etc.)

Why use BIM for Bridge Management Systems?

- A BIM model provides
 - 3D geometry
 - component types
 - material
 - protection systems
 - any other data
- Consistent storage, transparent usage
- Localizing defects in the model
 unambiguous interpretation

How can BIM models be acquired?

- For the large stock of existing bridges, there are no models available
- Manually reproducing the models would require too much effort
- Automation is required
 - laser-scanning
 - photogrammetry
- Challenges:
 - create real 3D geometry
 - identify semantics

SeeBridge Process

- Comprehensive process for creating BIMs for existing bridges
- Non-contact survey
- 3D modeling
- Damage detection
- Semantic enrichment
- IFC creation

SeeBridge IDM

Information Delivery Manual describes:

- the processes,
- the data exchange scenarios
- the data requirements involved with data exchanges
- basis for Model View Definition (MVD)

SeeBridge IDM

- 1. High-level process map
- 2. Detailed process map

Challenge:

international validity

SeeBridge Bridge Management data exchange map

Exchange Requirements

Information Group	Information Item	Attribute Set	Attributes	Notes	Model exchange (R/O/N)				
					EM-1	EM-2	EM-3A	EM-3B	EM-4
			Owner name		R	N	R	R	R
			Owner description		0	N	0	0	R
			Owner's agent name		0	N	0	0	0
		Bridge Type	Bridge primary type	Enumerated set	0	0	R	R	R
			Bridge secondary type	Enumerated set (only for bridges where type is changed between spans)	0	0	R	R	R
Bridge Section	Span	Identification	Span ID		R	R	R	R	R
	Aggregated geometric	Deck area		О	0	0	0	R	
		properties	Nominal span length		R	R	R	R	R
		Span type	Span technology	Enumerated set	0	0	0	0	R
Bridge Systems	Span	Identification	Bridge System ID		0	N	R	R	R
	Superstructure		Name		0	N	R	R	R
	Substructure		Туре		0	N	R	R	R
	Safety		Description		0	N	R	R	0
	Drainage	Performance Indices	Condition Index		N	N	N	N	R
	Utilities (water,		Availability index		N	N	N	N	0
	electrical, communications)		Reliability Index		N	N	N	N	0
	Signs		Load rating Index		N	N	N	N	0
	Traffic		Seismic Vulnerability Index		N	N	N	N	0
	Lighting		other Index		N	N	N	N	0

SeeBridge MVD

- Subset of the IFC4 Schema
- Rules for structures, attributes and geometry
- SeeBridge items mapped to IFC entities
- SeeBridge Exchange Models mapped to IFC Model View Exchange Requirements

On the basis of the IDM an *mvdxml* template was generated featuring relevant Concept Templates.

SeeBridge MVD

- Online database BIM*Q from AEC3 for mapping of the IDM onto IFC4
- No extension of the IFC schema necessary
- Usage of predefined types and PropertySets
- The mvdxml is exported from BIM*Q

SeeBridge MVD

- IFC models must be generated according to the MVD
- The MVD is used to check IFC models for compliance
- Tool: XBIM Explorer
- Helps to ensure quality of delivered IFC files

SeeBridge MVD

- Modeling of defects as surface features (IfcSurfaceFeature)
- A defect can span several elements and is comprised of element defects
- → Current IFC tools can correctly visualize modeled defects

